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Risk Management for Hedge Funds:
Introduction and Overview

Andrew W. Lo

Although risk management has been a well-plowed field in financial
modeling for more than two decades, traditional risk management tools such
as mean–variance analysis, beta, and Value-at-Risk do not capture many of
the risk exposures of hedge-fund investments. In this article, I review several
unique aspects of risk management for hedge funds—survivorship bias,
dynamic risk analytics, liquidity, and nonlinearities—and provide examples
that illustrate their potential importance to hedge-fund managers and
investors. I propose a research agenda for developing a new set of risk
analytics specifically designed for hedge-fund investments, with the
ultimate goal of creating risk transparency without compromising the
proprietary nature of hedge-fund investment strategies. 

espite ongoing concerns regarding the
lack of transparency and potential instabil-
ities of hedge-fund investment companies,
the hedge-fund industry continues to

grow at a rapid pace. Lured by the prospect of
double- and triple-digit returns and an unprece-
dented bull market, investors have committed
nearly $500 billion in assets to alternative invest-
ments. Even major institutional investors such as
the trend-setting California Public Employees
Retirement System are starting to take an interest in
hedge funds.1 

However, many institutional investors are not
yet convinced that “alternative investments” is a
distinct asset class, i.e., a collection of investments
with a reasonably homogeneous set of characteris-
tics that are stable over time. Unlike equities, fixed-
income instruments, and real estate—asset classes
each defined by a common set of legal, institutional,
and statistical properties—“alternative invest-
ments” is a mongrel category that includes private
equity, risk arbitrage, commodity futures, convert-
ible bond arbitrage, emerging market equities, sta-
tistical arbitrage, foreign currency speculation, and
many other strategies, securities, and styles. There-
fore, the need for a set of risk management protocols
specifically designed for hedge-fund investments
has never been more pressing. 

Part of the gap between institutional investors
and hedge-fund managers is the very different per-

spectives that these two groups have on the invest-
ment process. The typical manager’s perspective
can be characterized by the following statements:
• The manager is the best judge of the appropri-

ate risk/reward trade-off of the portfolio and
should be given broad discretion for making
investment decisions.

• Trading strategies are highly proprietary and,
therefore, must be jealously guarded lest they
be reverse-engineered and copied by others.

• Return is the ultimate and, in most cases, the
only objective.

• Risk management is not central to the success
of a hedge fund.

• Regulatory constraints and compliance issues
are generally a drag on performance; the whole
point of a hedge fund is to avoid these issues.

• There is little intellectual property involved in
the fund; the general partner is the fund.2

Contrast these statements with the following views
of a typical institutional investor:
• As fiduciaries, institutions need to understand

the investment process before committing to it.
• Institutions must fully understand the risk

exposures of each manager and, on occasion,
may have to circumscribe a manager’s strate-
gies to be consistent with the institution’s invest-
ment objectives.

• Performance is not measured solely by return,
but also includes other factors, such as risk,
tracking error relative to a benchmark, and
peer-group comparisons.

• Risk management and risk transparency are
essential.
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• Institutions operate in a highly regulated envi-
ronment and must comply with a number of
federal and state laws governing the rights,
responsibilities, and liabilities of pension plan
sponsors and other fiduciaries.

• Institutions desire structure, stability, and con-
sistency in a well-defined investment process
that is institutionalized and not dependent on
any single individual.

While there are, of course, exceptions to these two
sets of views, they do represent the essence of the
gap between hedge-fund managers and institu-
tional investors. However, despite these differences,
hedge-fund managers and institutional investors
clearly have much to gain from a better understand-
ing of each other’s perspectives, and they do share
the common goal of generating superior investment
performance for their clients.

In this article, I hope to contribute to the dia-
logue between hedge-fund managers and institu-
tional investors by providing an overview of
several key aspects of risk management for hedge
funds, aspects that any institutional investor must
grapple with as part of its manager-selection pro-
cess. While the risk management literature is cer-
tainly well-developed,3 nevertheless, there are at
least five aspects of hedge-fund investments that
pose unique challenges for existing risk manage-
ment protocols and analytics: (1) survivorship bias,
(2) dynamic risk analytics, (3) nonlinearities, (4)
liquidity and credit, and (5) risk preferences. I
describe each of these aspects in more detail in this
article, and outline an ambitious research agenda
for addressing them.

Why Risk Management?
In contrast to traditional investment vehicles, such
as stocks, bonds, and mutual funds, hedge funds
have different risk/return objectives. Most hedge-
fund investors expect high returns in exchange for
the corresponding risks that they are expected to
bear. Perhaps because it is taken for granted that
hedge funds are riskier, few hedge-fund investors
and even fewer hedge-fund managers seem to
devote much attention to active risk management.
Hedge-fund investors and managers often dismiss
risk management as secondary, with “alpha” or
return as the main objective. However, if there is
one lasting insight that modern finance has given
us, it is the inexorable trade-off between risk and
expected return; hence, one cannot be considered
without reference to the other. Moreover, it is often
overlooked that proper risk management can, by
itself, be a source of alpha. This is summarized
neatly in the old Street wisdom that “one of the best
ways to make money is not to lose it.”

More formally, consider the case of a manager
with a fund that has an annual expected return, E[R],

of 10 percent and an annual volatility, SD[R], of 75
percent, a rather mediocre fund that few hedge-fund
investors would consider seriously. Now suppose
that such a manager were to implement a risk man-
agement protocol on top of his investment strategy,
a protocol that eliminates the possibility of returns
lower than –20 percent. His return after implement-
ing this protocol is then R*, where 

R* = Max[R, –20%]. (1)

Under the assumption of lognormally distributed
returns, it can be shown that the expected value of
R*, E[R*], is 20.9 percent—by truncating the left tail
of the distribution of R below –20 percent, this man-
ager has doubled the expected value of the strategy!
Risk management can be a significant source of
alpha. Moreover, the volatility of R*, SD[R*], is 66.8
percent, lower than the volatility of R; hence, risk
management can simultaneously increase alpha
and decrease risk. Table 1 reports E[R*] and SD[R*]
for various values of E[R], SD[R], and truncation
levels and illustrates the potent and direct impact
that risk management can have on performance. 

Of course, risk management rarely takes the
simple form of a guaranteed floor for returns.
Indeed, such “portfolio insurance” is often quite
costly, if it can be obtained at all, and is equivalent
to the premium of a put option on the value of the
portfolio. For example, the Black–Scholes premium
for the put option implicit in Equation 1 is equal to
15.4 percent of the value of the portfolio to be
insured.4 But this only highlights the relevance and
economic value of risk management. According to
the Black–Scholes formula, the ability to manage
risks in such a way as to create a floor of –20 percent
for annual performance is worth 15.4 percent of
assets under management! The more effective a
manager’s risk management process is, the more it
will contribute to alpha.

Why Not VaR?
Given the impact that risk management can have on
performance, a natural reaction might be to adopt a
simple risk management program based on Value-
at-Risk (VaR), described in J.P. Morgan’s RiskMetrics
system documentation in the following way:

Value at Risk is an estimate, with a predefined
confidence interval, of how much one can lose
from holding a position over a set horizon.
Potential horizons may be one day for typical
trading activities or a month or longer for port-
folio management. The methods described in
our documentation use historical returns to
forecast volatilities and correlations that are
then used to estimate the market risk. These
statistics can be applied across a set of asset
classes covering products used by financial
institutions, corporations, and institutional
investors. (Morgan Guaranty Trust Company
1995, p. 3) 
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While there is no doubt that VaR is a useful generic
measure of risk exposure and that its widespread
popularity has increased the general level of aware-
ness of risk in the investment community, VaR has
a number of limitations that are particularly prob-
lematic for hedge-fund investments.

Perhaps the most obvious limitation is the fact
that VaR cannot fully capture the spectrum of risks
that hedge funds exhibit. To develop a sense for the
heterogeneity of risks among various hedge funds,

consider the following list of key components of a
typical long/short equity hedge fund:
• investment style (value, growth, etc.),
• fundamental analysis (earnings, analyst fore-

casts, accounting data),
• factor exposures (S&P 500 Index, industries,

sectors, characteristics),
• portfolio optimization (mean–variance analy-

sis, market neutrality),
• stock loan considerations (hard-to-borrow secu-

rities, “short squeezes”5), 

Table 1. The Value of Risk Management
E[R] E[R]

SD[R] –5% 0% 5% 10% 15% 20% –5% 0% 5% 10% 15% 20%

κ = –50% κ = –20%

5%  –5.0%  0.0% 5.0%  10.0%  15.0%  20.0%  –5.0%  0.0%  5.0%  10.0%  15.0%  20.0%
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

 10% –5.0 0.0 5.0 10.0 15.0 20.0 –4.8 0.0 5.0  10.0  15.0  20.0
10.0 10.0 10.0 10.0 10.0 10.0 9.6 9.9  10.0  10.0  10.0  10.0

 25% –5.0 0.0 5.0 10.0 15.0 20.0 –1.6 2.2 6.3  10.7  15.4  20.2
24.9 25.0 25.0 25.0 25.0 25.0  21.2  22.3  23.2  23.9  24.4  24.7

 50% –3.5 1.0 5.7 10.4 15.3 20.2 5.6 8.6  11.9  15.4  19.2  23.1
48.3 48.8 49.2 49.4 49.6 49.8  41.6  42.7  43.8  44.8  45.7  46.5

 75% –0.5 3.5 7.8 12.1 16.6 21.2  12.0  14.8  17.8  20.9  24.3  27.8
71.4 72.0 72.5 73.0 73.4 73.7  64.2  65.0  65.9  66.8  67.6  68.5

 100% 2.5 6.3 10.3 14.4 18.7 23.0  17.3  20.0  22.9  25.9  29.1  32.4
95.2 95.7 96.2 96.7 97.1 97.5  88.2  88.8  89.4  90.0  90.7  91.4

κ = –40% κ = –10%

5% –5.0 0.0 5.0 10.0 15.0 20.0  –4.6 0.0 5.0  10.0  15.0  20.0
5.0 5.0 5.0 5.0 5.0 5.0 4.4 4.9 5.0 5.0 5.0 5.0

 10% –5.0 0.0 5.0 10.0 15.0 20.0  –3.1 0.7 5.2  10.0  15.0  20.0
10.0 10.0 10.0 10.0 10.0 10.0 7.8 8.9 9.6 9.9  10.0  10.0

 25% –4.7 0.1 5.1 10.0 15.0 20.0 2.2 5.1 8.5  12.3  16.4  20.8
24.5 24.8 24.9 25.0 25.0 25.0  18.3  19.8  21.1  22.2  23.1  23.8

 50% –1.5 2.6 6.8 11.3 15.9 20.6  10.7  13.2  15.9  18.9  22.2  25.7
46.6 47.3 47.9 48.5 48.9 49.2  38.7  39.9  41.0  42.2  43.3  44.4

 75% 2.8 6.4 10.2 14.2 18.3 22.6  17.7  20.2  22.7  25.5  28.4  31.5
69.3 70.0 70.7 71.3 71.9 72.4  61.5  62.3  63.2  64.1  65.0  66.0

 100% 6.7 10.2 13.8 17.5 21.4 25.4  23.5  25.9  28.5  31.2  34.0  37.0
93.0 93.6 94.2 94.7 95.3 95.8  85.7  86.2  86.8  87.5  88.2  88.9

κ = –30% κ = –5%

5%  –5.0 0.0 5.0 10.0 15.0 20.0  –3.0 0.4 5.0  10.0  15.0  20.0
5.0 5.0 5.0 5.0 5.0 5.0 3.0 4.4 4.9 5.0 5.0 5.0

 10% –5.0 0.0 5.0 10.0 15.0 20.0  –1.0 1.9 5.7  10.2  15.0  20.0
10.0 10.0 10.0 10.0 10.0 10.0 6.2 7.8 8.9 9.6 9.9  10.0

 25% –3.8 0.7 5.3 10.2 15.1 20.0 4.8 7.3  10.2  13.5  17.3  21.4
23.4 24.0 24.4 24.7 24.9 24.9  16.8  18.3  19.7  21.0  22.1  23.0

 50% 1.5 5.1 8.9 12.9 17.1 21.5  13.6  15.8  18.3  21.1  24.1  27.3
44.3 45.2 46.1 46.9 47.6 48.2  37.2  38.4  39.6  40.8  41.9  43.1

 75% 7.0 10.2 13.6 17.1 20.9 24.8  20.9  23.1  25.5  28.0  30.8  33.7
66.8 67.6 68.4 69.2 69.9 70.7  60.1  60.9  61.8  62.7  63.7  64.6

 100% 11.7 14.7 18.0 21.4 24.9 28.5  26.7  29.0  31.4  34.0  36.7  39.5
 90.7 91.2 91.9 92.5 93.1 93.8  84.4  84.9  85.5  86.2  86.9  87.6

Note: Each first row gives the new expected return, R∗ ≡ Max(R,κ), and each second row gives the new standard deviation of R∗ for
lognormally distributed returns with various expectations, standard deviations, and truncation points.
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• execution costs (price impact, commissions,
borrowing rate, short rebate), 

• benchmarks and tracking error (T-bill rate ver-
sus S&P 500),

and compare them with a similar list for a typical
fixed-income hedge fund:
• yield-curve models (equilibrium versus arbi-

trage models),
• prepayment models (for mortgage-backed

securities),
• optionality (call, convertible, and put features),
• credit risk (defaults, rating changes, etc.), 
• inflationary pressures, central bank activity,
• other macroeconomic factors and events.
The degree of overlap in these two lists is astonish-
ingly small. While such differences also exist among
traditional institutional asset managers, they do not
have nearly the latitude that hedge-fund managers
have in their investment activities; hence, these dif-
ferences are not as consequential for traditional
managers.

Second, VaR is a purely statistical measure of
risk—typically a 95 percent confidence interval or,
alternatively, the magnitude of loss corresponding
to a 5 percent tail probability—with little or no
economic structure underlying its computation.
Originally developed by OTC derivatives dealers to
evaluate the risk exposure of portfolios of deriva-
tive securities, VaR may not be ideally suited to
other types of investments, e.g., emerging market
debt, risk arbitrage, or convertible bond arbitrage.
In particular, as a static snapshot of the marginal
distribution of a portfolio’s profit and loss, VaR
does not capture liquidity risk, event risk, credit
risk, factor exposures, or time-varying risks due to
dynamic trading strategies that may be systemati-
cally keyed to market conditions, e.g., contrarian,
short-volatility, and credit-spread strategies.

Third, without additional economic structure,
VaR is notoriously difficult to estimate. By defini-
tion, “tail events” are events that happen rarely;
hence, historical data will contain only a few of
these events, generally too small a sample to yield
reliable estimates of tail probabilities. For example,
suppose we wish to estimate the probability, p, of
a rare event occurring in any given year. Denote by
It an indicator function that takes on the value of 1
if the event occurs in year t and 0 otherwise; hence, 

. (2)

Now, the usual estimator for p is simply the relative
frequency of events in a sample of T observations:

(3)

This estimator is a binomial random variable;
hence, its distribution is known, and we can readily
compute its mean and standard error: 

(4a)

(4b)

Suppose we wish to obtain a standard error of 1
percent for our estimator  (so that we can make the
statement that the true p lies in the interval

 with 95 percent confidence)—
how much data would we need? From Equation 4,
we have:

(5)

and if we assert that the true probability p is 5 per-
cent, Equation 5 yields a value of 475 years of data!

Alternatively, VaR is often computed under the
assumption that the distribution is normal; hence,
estimates of tail probabilities can be obtained by
estimating the mean and variance of the distribu-
tion, not just the relative frequency of rare events.
But this apparent increase in precision comes at the
expense of the parametric assumption of normality,
and it is well known that financial data—especially
hedge-fund returns—are highly nonnormal; i.e.,
they are asymmetrically distributed, highly
skewed, often multimodal, and with fat tails that
imply many more “rare” events than the normal
distribution would predict.

Finally, VaR is an unconditional measure of
risk, where “unconditional” refers to the fact that
VaR calculations are almost always based on the
unconditional distribution of a portfolio’s profit-
and-loss. But for purposes of active risk manage-
ment, conditional measures are more relevant,
especially for investment strategies that respond
actively to changing market conditions. The fact
that a portfolio’s VaR for the next week is $10
million may be less informative than a conditional
probability statement in which VaR is $100 million
if the S&P 500 declines by 5 percent or more and $1
million otherwise. Moreover, implicit in VaR calcu-
lations are assumptions regarding the correlations
between components of the portfolio, and these
correlations are also computed unconditionally.
But one of the most important lessons of the sum-
mer of 1998 is the fact that correlations are highly
dependent on market conditions and that securities
which seem uncorrelated during normal times may
become extremely highly correlated during market

It
1 with probability p

0 with probability 1 – p



=

p̂ 1
T
--- It.

t =1

T

∑=

E p̂[ ] p=

SD p̂[ ] p 1 p–( )
T

---------------------.=

p̂

p̂ 2%, p̂– 2%+[ ]

0.01 p 1 p–( )
T

--------------------- T p 1 p–( )

0.012
---------------------,=⇒=
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crises (a concrete example is given below in the
section “Nonlinearities”).

Despite these shortcomings, it is important to
keep in mind that VaR does serve a very useful
purpose in helping institutional investors think
about risk in a more disciplined fashion. Moreover,
when applied over longer time spans and with more
realistic statistical assumptions, e.g., leptokurtic
distributions, time-varying risk factors, and event-
dependent correlations (see below), VaR can incor-
porate some of the considerations described above.
Also, proponents of VaR may argue with some
justification that VaR was never designed to mea-
sure the myriad types of risk that hedge-fund
investments exhibit. This is precisely the motivation
for this article, and in the remaining sections, I
describe in more detail the unique aspects of risk
management for hedge funds and the new kinds of
tools that are needed to serve this dynamic industry.

Survivorship Bias
Any quantitative approach to risk management
makes use of historical data to some extent. Risk
management for hedge funds is no exception, but
there is one aspect of hedge-fund data that makes
this endeavor particularly challenging: survivorship
bias. Few hedge-fund databases maintain histories
of funds that have shut down, partly for legal rea-
sons,6 and partly because the primary users of these
databases are investors seeking to evaluate existing
managers they can invest in. In the few cases where
databases do contain “dead” as well as active funds,
studies have concluded that the impact of survivor-
ship bias can be substantial.7 To see how important
survivorship bias can be, consider a collection of n
funds with returns R1, …, Rn and define their excess
return per unit of risk as

(6)

where Rf is the rate of return on the riskless asset,
and σj is the standard deviation of Rj. The Xj’s are
natural performance statistics that investors might
consider in evaluating the funds—observe that the
expectation, E[Xj], of these performance statistics is
the well-known Sharpe ratio. For simplicity, assume
that these performance statistics are independently
and identically distributed (i.i.d.) with distribution
function F(X).

Suppose that none of these funds possesses
any superior performance or alpha, so E[Xj] = 0 for
all j, and consider the “best” fund, defined to be the
fund with the best realized performance statistic:

(7)

Now, clearly, this best-performing fund is no better
than any of the others—recall that none of the funds
has any alpha—but if we attempt to draw infer-
ences from X* without taking into account the fact
that we have selected it from a population of funds
solely because of its performance, we will falsely
conclude that the manager has substantial skill.

To illustrate how significant an effect this selec-
tion bias can be, Table 2 reports the mean, standard
deviation, and 2.5 percent and 97.5 percent quan-
tiles, C0.025 and C0.975, of X* for various values of n,
under the assumption that the Xj’s are standard
normal random variables.8 Even with a sample of
only five funds, the Sharpe ratio, E[X*], of the best-
performing fund is 1.16, despite the fact that the
true Sharpe ratios of all of the funds are exactly
zero! This bias becomes even more pronounced as
the number of funds n increases, yielding a Sharpe
ratio of 2.04 for the best performing of 30 funds.
Moreover, the variation of the performance statistic
X*, as measured by its standard deviation, declines
as the number of funds n increases, giving the false
appearance of more stable performance in larger
populations of funds. 

Now of course, if it were truly possible to
invest today in the fund that will perform best over
the next 12 months, this would certainly yield sub-
stantial returns with greatly reduced risks. In such
circumstances of perfect foresight, the entries in
Table 2 would represent genuine performance, not
statistical biases. But 20/20 hindsight is not equiv-
alent to perfect foresight. In our example, the best-
performing fund of the past year is unlikely to be
the best-performing fund the next year, simply
because we have assumed that no manager pos-
sesses alpha; hence, performance and rank order-
ing are completely random.

The fact that most existing hedge-fund data-
bases contain only current funds implies that only
the survivors are included, i.e., a selection process

Xj

Rj Rf–

σj
----------------- ,≡

X* Max X1 X2 … Xn, , ,[ ].≡

Table 2. Impact of Selection Bias

n E[X∗] SD[X∗] C0.025 C0.975

1 0.00000 1.00000 –1.960 1.960

5 1.16296 0.66898 –0.055 2.572

10 1.53875 0.58681 0.506 2.803

15 1.73591 0.54867 0.779 2.932

20 1.86748 0.52507 0.960 3.020

25 1.96531 0.50844 1.093 3.087

30 2.04276 0.49582 1.197 3.140

Note: Moments and extreme quantiles of the performance statis-
tic of the best-performing fund.
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not unlike Equation 7 has been imposed on the
larger set of all hedge funds, both current and
defunct. Although this form of survivorship bias
may not be as extreme as the example in Table 2
for any given fund, it does affect the entire cross-
section of funds, and its impact is compounded
over time in the returns of each survivor. The end
result can be enormous for the unwary investor
seeking to construct an optimal portfolio of hedge
funds. Any quantitative approach to hedge-fund
investments must address this issue explicitly, and
there are several statistical methods ideally suited
to this purpose.9

Dynamic Risk Analytics
One of the justifications for the unusually rich fee
structures that characterize hedge-fund invest-
ments is that hedge funds implement highly active
strategies involving highly skilled portfolio man-
agers. Moreover, it is common wisdom that the
most talented managers are drawn first to the
hedge-fund industry because the absence of regu-
latory constraints enables them to make the most of
their investment acumen. With the freedom to
trade as much or as little as they like on any given
day, to go long or short any number of securities
and with varying degrees of leverage, and to
change investment strategies at a moment’s notice,
hedge-fund managers enjoy enormous flexibility
and discretion in pursuing performance. But
dynamic investment strategies imply dynamic risk
exposures, and while modern financial economics
has much to  say about the risk of  static
investments—the market beta is sufficient in this
case—there is currently no single measure of the
risk of a dynamic investment strategy.10

To illustrate the difficulties involved in measur-
ing the risk exposures of a dynamic investment strat-
egy, consider the eight-year track record of a
hypothetical hedge fund, Capital Decimation Part-
ners, LP (CDP), summarized in Table 3. This track
record was obtained by applying a specific invest-
ment strategy, to be revealed below, to actual market
prices from January 1992 to December 1999. But
before discussing the particular strategy that gener-
ated these results, consider the strategy’s overall
performance: an average monthly return of 3.7 per-
cent versus 1.4 percent for the S&P 500; a total return
of 2,721.3 percent over the eight-year period versus
367.1 percent for the S&P 500; a Sharpe ratio of 1.94
versus 0.98 for the S&P 500; and only 6 negative
monthly returns out of 96 versus 36 out of 96 for the
S&P 500. In fact, the monthly performance history—
displayed in Table 4—shows that, as with many
other hedge funds, the worst months for this fund

were August and September of 1998. Yet, October
and November 1998 were the fund’s two best
months, and for 1998 as a whole, the fund was up
87.3 percent versus 24.5 percent for the S&P 500! By
all accounts, this is an enormously successful hedge
fund with a track record that would be the envy of
most managers.11 What is its secret? 

The investment strategy summarized in Tables
3 and 4 consists of shorting out-of-the-money S&P
500 (SPX) put options on each monthly expiration
date for maturities less than or equal to three
months, and with strikes approximately 7 percent
out of the money. The number of contracts to be sold
each month is determined by the combination of: (1)
Chicago Board Options Exchange margin require-
ments,12 (2) an assumption that 66 percent of the
margin is required to be posted as collateral,13 and
(3) $10 million of initial risk capital. For concrete-
ness, Table 5 reports the positions and profit/loss
statement for this strategy for 1992.

The track record in Tables 3 and 4 seems much
less impressive in light of the simple strategy on
which it is based, and few investors would pay
hedge-fund-type fees for such a fund. However,
given the secrecy surrounding most hedge-fund
strategies and the broad discretion that managers
are given by the typical hedge-fund offering mem-
orandum, it is difficult for investors to detect this
type of behavior without resorting to more sophis-
ticated risk analytics, analytics that can capture
dynamic risk exposures.

Some might argue that this example illustrates
the need for position transparency—after all, it
would be apparent from the positions in Table 5 that
the manager of CDP is providing little or no value-
added. However, there are many ways of imple-
menting this strategy that are not nearly so transpar-
ent, even when positions are fully disclosed. For
example, Table 6 reports the weekly positions over
a six-month period in one of 500 securities contained
in a second hypothetical fund, Capital Decimation
Partners II, LLC. Casual inspection of the positions

Table 3. Capital Decimation Partners, LP, 
January 1992–December 1999

Statistic CDP S&P 500

Monthly mean (%) 3.7 1.4

Monthly standard deviation (%) 5.8 3.6

Minimum month (%) –18.3 –8.9

Maximum month (%) 27.0 14.0

Annual Sharpe ratio 1.94 0.98

Number of negative months (out of total) 6/96 36/96

Correlation with S&P 500 59.9 100.0

Total return (%) 2,721.3 367.1
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Table 4. Monthly Performance History of Capital Decimation Partners, LP, January 1992–
December 1999 
(returns, in percent)

1992 1993 1994 1995 1996 1997 1998 1999

Month SPX CDP SPX CDP SPX CDP SPX CDP SPX CDP SPX CDP SPX CDP SPX CDP

January  8.2  8.1  –1.2  1.8 1.8 2.3  1.3 3.7  –0.7 1.0  3.6  4.4  1.6  15.3 5.5  10.1

February  –1.8  9.3  –0.4  1.0 –1.5 0.7  3.9 0.7 5.9 1.2  3.3  6.0  7.6  11.7  –0.3  16.6

March  0.0  4.9  3.7  3.6 0.7 2.2  2.7 1.9  –1.0 0.6  –2.2  3.0  6.3  6.7 4.8  10.0

April  1.2  3.2  –0.3  1.6 –5.3 –0.1  2.6 2.4 0.6 3.0  –2.3  2.8  2.1  3.5 1.5 7.2

May  –1.4  1.3  –0.7  1.3 2.0 5.5  2.1 1.6 3.7 4.0  8.3  5.7  –1.2  5.8 0.9 7.2

June  –1.6  0.6  –0.5  1.7 0.8 1.5  5.0 1.8  –0.3 2.0  8.3  4.9  –0.7  3.9 0.9 8.6

July  3.0  1.9  0.5  1.9 –0.9 0.4  1.5 1.6  –4.2 0.3  1.8  5.5  7.8  7.5 5.7 6.1

August  –0.2  1.7  2.3  1.4 2.1 2.9  1.0 1.2 4.1 3.2  –1.6  2.6  –8.9  –18.3  –5.8  –3.1

September  1.9  2.0  0.6  0.8 1.6 0.8  4.3 1.3 3.3 3.4  5.5  11.5  –5.7  –16.2  –0.1 8.3

October  –2.6  –2.8  2.3  3.0 –1.3 0.9  0.3 1.1 3.5 2.2  –0.7  5.6  3.6  27.0  –6.6  –10.7

November  3.6  8.5  –1.5  0.6 –0.7 2.7  2.6 1.4 3.8 3.0  2.0  4.6  10.1  22.8  14.0  14.5

December  3.4  1.2  0.8  2.9 –0.6  10.0  2.7 1.5 1.5 2.0  –1.7  6.7  1.3  4.3  –0.1 2.4

Year  14.0  46.9  5.7  23.7 –1.6  33.6  34.3  22.1  21.5  28.9  26.4  84.8  24.5  87.3  20.6  105.7

Note: SPX = S&P 500.

Table 5. Positions and Profit/Loss of Capital Decimation Partners, LP, 1992

S&P 500
Contract

Status
Number 
of Puts Strike Price Expiration

Margin 
Required Profits

Initial Capital
plus Cumulative 

Profits

Capital 
Available for 
Investments Return

December 20, 1991

 387.04 New  2,300 360 $4.625 3/92 $ 6,069,930  $10,000,000  $6,024,096

January 17, 1992

 418.86 Mark to market  2,300 360 $1.125 3/92 $ 654,120 $ 805,000  $10,805,000  $6,509,036 8.1%

 418.86 New  1,950 390 $3.250 3/92 $ 5,990,205

Total margin $ 6,644,325

February 21, 1992

 411.46 Mark to market  2,300 360 $0.250 3/92 $ 2,302,070 $ 690,000

 411.46 Mark to market  1,950 390 $1.625 3/92 $ 7,533,630 $ 316,875  $11,811,875  $7,115,587 9.3%

 411.46 Liquidate  1,950 390 $1.625 3/92 $ 0 $ 0  $11,811,875  $7,115,587

 411.46 New  1,246 390 $1.625 3/92 $ 4,813,796

Total margin $ 7,115,866

March 20, 1992

 411.30 Expired  2,300 360 $0.000 3/92 $ 0 $ 373,750

 411.30 Expired  1,246 390 $0.000 3/92 $ 0 $ 202,475

 411.30 New  2,650 380 $2.000 5/92 $ 7,524,675  $12,388,100  $7,462,711 4.9%

Total margin $ 7,524,675

April 19, 1992

 416.05 Mark to market  2,650 380 $0.500 5/92 $ 6,852,238 $ 397,500

 416.05 New  340 385 $2.438 6/92 $ 983,280  $12,785,600  $7,702,169 3.2%

Total margin $ 7,835,518

May 15, 1992

 410.09 Expired  2,650 380 $0.000 5/92 $ 0 $ 132,500

 410.09 Mark to market  340 385 $1.500 6/92 $ 1,187,399 $ 31,875

 410.09 New  2,200 380 $1.250 7/92 $ 6,638,170  $12,949,975  $7,801,190 1.3%

Total margin $ 7,825,569
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in this one security seems to suggest a contrarian
trading strategy—when the price declines, the posi-
tion in XYZ is increased, and when the price
advances, the position is reduced. A more careful
analysis of the stock and cash positions and the
varying degree of leverage in Table 6 reveals that
these trades constitute a so-called “delta-hedging”
strategy, designed to synthetically replicate a short
position in a two-year European put option on
10,000,000 shares of XYZ with a strike price of $25
(recall that XYZ’s initial stock price was $40; hence,
this is a deep-out-of-the-money put).

Shorting deep out-of-the-money puts is a well-
known artifice employed by unscrupulous hedge-
fund managers to build an impressive track record
quickly, and most sophisticated investors are able
to avoid such chicanery. However, imagine an
investor presented with position reports such as
Table 6, but for 500 securities, not just one, as well

as a corresponding track record that is likely to be
even more impressive than that of CDP.14 Without
additional analysis that explicitly accounts for the
dynamic aspects of the trading strategy described
in Table 6, it is difficult for an investor to fully
appreciate the risks inherent in such a fund.

In particular, static methods such as traditional
mean–variance analysis cannot capture the risks of
dynamic trading strategies like those of CDP (note
the impressive Sharpe ratio in Table 3). In the case
of the strategy of shorting out-of-the-money put
options on the S&P 500, returns are positive most
of the time, and losses are infrequent, but when
they occur, they are extreme. This is a very specific
type of risk signature that is not well summarized
by static measures such as standard deviation. In
fact, the estimated standard deviations of such
strategies tend to be rather low; hence, a naive
application of mean–variance analysis, such as

S&P 500
Contract

Status
Number 
of Puts Strike Price Expiration

Margin 
Required Profits

Initial Capital
plus Cumulative 

Profits

Capital 
Available for 
Investments Return

June 19, 1992

 403.67 Expired  340 385 $0.000 6/92 $ 0  $ 51,000

 403.67 Mark to market  2,200 380 $1.125 7/92 $ 7,866,210  $ 27,500  $13,028,475  $7,848,479 0.6%

Total margin $ 7,866,210

July 17, 1992

 415.62 Expired  2,200 380 $0.000 7/92 $ 0  $ 247,500

 415.62 New  2,700 385 $1.8125 9/92 $ 8,075,835  $13,275,975  $7,997,575 1.9%

Total margin $ 8,075,835

August 21, 1992

 414.85 Mark to market  2,700 385 $1 9/92 $ 8,471,925  $ 219,375  $13,495,350  $8,129,729 1.7%

Total margin $ 8,471,925

September 18, 1992

 422.92 Expired  2,700 385 $0 9/92 $ 0  $ 270,000  $13,765,350  $8,292,380 2.0%

 422.92 New  2,370 400 $5.375 12/92 $ 8,328,891

Total margin $ 8,328,891

October 16, 1992

 411.73 Mark to market  2,370 400 $7 12/92 $10,197,992  ($ 385,125)

 411.73 Liquidate  2,370 400 $7 12/92 $ 0  $ 0  $13,380,225  $8,060,377 –2.8%

 411.73 New  1,873 400 $7 12/92 $ 8,059,425

Total margin $ 8,059,425

November 20, 1992

 426.65 Mark to market  1,873 400 $0.9375 12/92 $ 6,819,593  $1,135,506  $14,515,731  $8,744,416 8.5%

 426.65 New  529 400 $0.9375 12/92 $ 1,926,089

Total margin $ 8,745,682

December 18, 1992

 441.20 Expired  1,873 400 $0 12/92 $ 0  $ 175,594  $14,691,325  $8,850,196 1.2%

1992 Total return 46.9%

Table 5. Positions and Profit/Loss of Capital Decimation Partners, LP, 1992 (continued)
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risk-budgeting—an increasingly popular method
used by institutions to make allocations based on
risk units—can lead to unusually large allocations
to funds like CDP. The fact that total position trans-
parency does not imply risk transparency is further
cause for concern.

This is not to say that the risks of shorting out-
of-the-money puts are inappropriate for all inves-
tors. Indeed, the thriving catastrophe reinsurance
industry makes a market in precisely this type of
risk, often called “tail risk.” However, such insurers
do so with full knowledge of the loss profile and
probabilities for each type of catastrophe, and they
set their capital reserves and risk budgets accord-
ingly. The same should hold true for institutional
investors of hedge funds, but the standard tools
and lexicon of the industry currently provide only
an incomplete characterization of such risks. The
need for a new set of dynamic risk analytics specif-
ically targeted for hedge fund investments is clear.

Nonlinearities
One of the most compelling reasons for investing
in hedge funds is the fact that their returns seem

relatively uncorrelated with market indexes such
as the S&P 500, and modern portfolio theory has
convinced even the most hardened skeptic of the
benefits of diversification. For example, Table 7
reports the correlation matrix for the returns of
hedge fund indexes, where each index represents a
particular hedge-fund “style,” such as currencies,
emerging markets, relative value, etc. The last row
reports the correlations of all these hedge-fund
indexes with the returns on the S&P 500, and it is
apparent that many hedge-fund styles have low or,
in some cases, negative correlation with the market.

However, the diversification argument for
hedge funds must be tempered by the lessons of the
summer of 1998, when the default in Russian gov-
ernment debt triggered a global flight to quality
that changed many of the correlations overnight
from 0 to 1. In the physical and natural sciences,
such phenomena are examples of “phase-locking”
behavior, situations in which otherwise uncorre-
lated actions suddenly become synchronized.15

The fact that market conditions can create phase-
locking behavior is certainly not new—market
crashes have been with us since the beginning of
organized financial markets. But prior to 1998, few
hedge-fund investors and managers incorporated
this possibility into their investment processes in
any systematic fashion. 

From a financial-engineering perspective, the
most reliable way to capture phase-locking effects
is to estimate a risk model for returns in which
such events are explicitly allowed. For example,
suppose returns are generated by the following
two-factor model:

Rit = αi + βiΛt + ItZt + εit, (8)

where
Rit = return on fund i at time t,
αi = fund intercept,
Λt = a “market” component,
βi = fund sensitivity to the market,
ItZt = “phase-locking” component or cata-

strophic market event,
εit = non-systematic (idiosyncratic) risk of

fund i at time t.
Also, assume that Λt, It, Zt, and εit are mutually i.i.d.
with the following moments:

(9a)

(9b)

(9c)

where µλ and  are the mean and variance of
the market factor;  is the residual variance of
fund i’s return, and  is the variance of the

Table 6. Weekly Positions in XYZ: Capital 
Decimation Partners II, LLC

Week t
Price

($)
Position
(shares)

Value
($)

Financing
($)

0 40.000 7,057  282,281  –296,974

1 39.875 7,240  288,712  –304,585

2 40.250 5,850  235,456  –248,918

3 36.500  33,013  1,204,981  –1,240,629

4 36.875  27,128  1,000,356  –1,024,865

5 36.500  31,510  1,150,101  –1,185,809

6 37.000  24,320  899,841  –920,981

7 39.875 5,843  232,970  –185,111

8 39.875 5,621  224,153  –176,479

9 40.125 4,762  191,062  –142,159

10 39.500 6,280  248,065  –202,280

11 41.250 2,441  100,711  –44,138

12 40.625 3,230  131,205  –76,202

13 39.875 4,572  182,300  –129,796

14 39.375 5,690  224,035  –173,947

15 39.625 4,774  189,170  –137,834

16 39.750 4,267  169,609  –117,814

17 39.250 5,333  209,312  –159,768

18 39.500 4,447  175,657  –124,940

19 39.750 3,692  146,777  –95,073

20 39.750 3,510  139,526  –87,917

21 39.875 3,106  123,832  –71,872

22 39.625 3,392  134,408  –83,296

23 39.875 2,783  110,986  –59,109

24 40.000 2,445  97,782  –45,617

25 40.125 2,140  85,870  –33,445

E Λt[ ] µλ,= Var Λt[ ] σλ
2 ,=

E εit[ ] 0,= Var εi t[ ] σεi

2 ,=

E Zt[ ] 0,= Var Zt[ ] σz
2,=

σλ
2

σεi
2

σz
2
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Table 7. Correlation Matrix for Hedge Fund Index Returns: Monthly Data, January 1996–November 1999
(in percent)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1. Currencies  100.0

2. ED—distress  4.7  100.0

3. ED—merger 
arb  –11.1  54.4  100.0

4. EM—equity  –21.0  42.8  47.2  100.0

5. EM  –11.1  45.6  50.2  86.3  100.0

6. EM—fixed 
income  –5.8  28.7  34.2  43.8  76.3  100.0

7. ED  –5.7  85.8  80.8  54.6  58.8  40.1  100.0

8. Fund of funds  7.9  59.2  52.4  44.3  56.8  49.8  70.8  100.0

9. Futures trading  45.3  3.0  –7.7  –6.1  5.5  15.3  0.5  30.1  100.0

10. Growth  –3.7  49.1  47.6  34.2  42.7  29.2  60.5  63.2  6.9  100.0

11. High yield  8.0  54.2  16.7  25.2  33.5  35.4  48.2  35.8  7.2  12.9  100.0

12. Macro  28.5  10.9  8.7  5.5  16.9  30.1  17.1  44.1  51.5  14.5  17.1  100.0

13. Opportunistic  9.7  49.3  40.5  29.0  43.8  43.4  60.3  74.7  19.4  68.0  24.4  45.0  100.0

14. Other  8.7  53.9  51.6  37.6  52.7  48.0  64.3  68.5  27.3  76.9  20.3  29.6  73.6  100.0

15. RV  12.0  48.9  36.9  37.5  39.4  26.0  53.9  46.1  13.5  19.1  51.0  18.5  34.2  31.6  100.0

16. RV—
convertible  8.1  52.2  36.3  28.6  41.6  37.3  54.4  45.4  6.9  25.9  49.6  22.7  47.1  33.6  56.9  100.0

17. RV—EQLS  6.5  30.5  43.5  33.5  26.2  12.6  42.5  34.0  4.2  34.3  17.1  9.0  26.3  41.4  50.8  13.0  100.0

18. RV—option arb  –0.3  7.1  1.5  14.6  10.6  3.4  8.9  3.0  –2.1  –20.3  12.2  6.5  4.7  –14.0  47.3  2.0  –4.0  100.0

19. RV—other—
stat arb  10.2  19.9  –0.2  17.2  12.4  –2.4  13.6  19.4  0.6  22.4  8.1  –12.8  10.2  14.4  30.2  8.1  7.0  5.3  100.0

20. Short selling  15.1  –48.1  –53.8  –35.2  –43.4  –30.1  –61.8  –49.9  8.6  –85.7  –12.3  –4.3  –59.1  –67.9  –9.6  –28.6  –29.5  21.6  –11.0  100.0

21. Value  –10.6  65.7  59.3  47.9  62.0  43.5  78.4  69.4  8.7  74.3  26.0  15.2  67.0  77.7  36.6  45.5  34.3  –4.3  20.3  –73.8  100.0

22. S&P 500  11.1  40.7  46.6  28.6  43.1  35.4  51.0  54.6  19.3  78.0  18.1  20.5  60.4  71.3  23.4  28.3  41.5  –16.3  7.6  –70.1  63.9

Note: ED = event driven; arb = arbitrage; EM = emerging market; RV = relative value; EQLS = equity long/short; stat = statistical. 
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phase-locking component Z. Let the phase-locking
event indicator, It, be defined by

. (10)

According to Equation 8, the expected returns of
fund i are the sum of three components: the fund’s
intercept, αi; a “market” component Λt, to which
each fund has its own individual sensitivity βi; and
a phase-locking component that is identical across
all funds at all times, taking only one of two possi-
ble values, 0 (with probability p) or Zt (with proba-
bility 1 – p). If we assume that p is small, say 0.001,
then most of the time the expected returns of fund
i are determined by αi + βiΛt, but every once in a
while, an additional term, Zt, appears. If the vola-
tility σz of Zt is much larger than the volatilities of
the market factor, Λt, and the idiosyncratic risk, εit,
then the common factor Zt will dominate the
expected returns of all stocks when It = 1, i.e., phase-
locking behavior.

More formally, consider the conditional corre-
lation coefficient of two funds i and j, defined as the
ratio of the conditional covariance divided by the
square root of the product of the conditional vari-
ances, conditioned on no catastrophes (It = 0):

(11)

(12)

where we have assumed that  to capture
the market-neutral characteristic that many
hedge-fund investors desire. Now, consider the
conditional correlation, conditioned on the occur-
rence of a catastrophe (It = 1): 

(13)

(14)

If  is large relative to  and , i.e., if the
variability of the catastrophe component domi-
nates the variability of the residuals of both funds—
a plausible condition that follows from the very
definition of a catastrophe—then Equation 14 will
be approximately equal to 1! When phase locking
occurs, the correlation between the two funds i and
j—close to 0 during normal times—can become
arbitrarily close to 1.

An insidious feature of Equation 8 is the fact
that it implies a very small value for the uncondi-
tional correlation, which is the quantity most readily
estimated and the most commonly used in risk
reports, VaR calculations, and portfolio decisions.
To see why, recall that the unconditional correlation
coefficient is simply the unconditional covariance
divided by the product of the square roots of the
unconditional variances:

(15)

(16)

. (17)

Combining these expressions yields the uncondi-
tional correlation coefficient under Equation 8:

(18)

(19)

If we let p = 0.001 and assume that the variability of
the phase-locking component is 10 times the vari-
ability of residuals εi and εj, this implies an uncon-
ditional correlation of 

or less than 1 percent. As the variance, , of the
phase-locking component increases, the uncondi-
tional correlation Equation 19 also increases, so
that, eventually, the existence of Zt will have an
impact. However, to achieve an unconditional cor-
relation coefficient of, say, 10 percent,  would
have to be about 100 times larger than . Without
the benefit of an explicit risk model such as Equa-
tion 8, it is virtually impossible to detect the exist-
ence of a phase-locking component from standard
correlation coefficients.

Hedge-fund returns exhibit other nonlineari-
ties that are not captured by linear measures such
as correlation coefficients and linear factor models.
An example of a simple nonlinearity is an asym-
metric sensitivity to the S&P 500, i.e., different beta
coefficients for down markets versus up markets.
Specifically, consider the following regression:

(20)
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where

, (21a)

, (21b)

and Λt is the return on the S&P 500. Since Λt = 
+ , the standard linear model in which fund i’s
market betas are identical in up and down markets
is a special case of the more general specification in
Equation 20 (the case where  = ). However, the
estimates reported in Table 8 for the hedge-fund
index returns of Table 7 show that beta asymmetries
can be quite pronounced for certain hedge-fund
styles. For example, the emerging-market equities
index (“EM—equity”) has an up-market beta of
0.16—seemingly close to market neutral; however,
its down-market beta is 1.49! For the relative-value
option-arbitrage index (“RV—option arb”), the
asymmetries are even more severe—the coeffi-
cients are of opposite sign, with a beta of –0.78 in
up markets and a beta of 0.33 in down markets. This

is not surprising given the highly nonlinear payoff
structures of derivative securities; nevertheless, it
would be a mistake to classify this set of returns as
“market neutral.” 

These empirical results suggest the need for a
more sophisticated analysis of hedge-fund returns,
one that accounts for asymmetries in factor expo-
sures, phase-locking behavior, and other nonlinear-
ities that are endemic to high-performance active
investment strategies. In particular, nonlinear risk
models must be developed for the various types of
securities that hedge funds trade, e.g., equities,
fixed-income instruments, foreign exchange, com-
modities, and derivatives, and for each type of secu-
rity, the risk model should include the following
general groups of factors:
• market index returns,
• sectors,
• investment style,
• volatilities,
• credit,
• liquidity, 
• macroeconomic indicators. 

Λt
+ Λt if Λt 0>

0 otherwise



=

Λt
– Λt if Λt 0≤

0 otherwise



=

Λt
+

Λt
–

βi
+ βi

–

Table 8. Nonlinearities in Hedge-Fund Index Returns: Monthly Data, 
January 1996–November 1999 

Style Index R2

Currencies 0.93 1.97 0.05 0.34 0.13 0.81 0.01

ED—distress 1.95 7.84 –0.11 –1.50 0.58 6.95 0.36

ED—merger arb 1.35 7.99 0.04 0.91 0.27 4.78 0.27

EM—equity 3.78 2.41 0.16 0.34 1.49 2.84 0.11

EM 2.64 3.20 0.21 0.88 1.18 4.27 0.23

EM—fixed income 1.88 3.99 0.07 0.49 0.56 3.56 0.16

ED 1.61 9.35 –0.01 –0.26 0.43 7.37 0.41

Fund of funds 1.07 6.89 0.08 1.84 0.27 5.13 0.33

Futures trading 0.69 1.35 0.18 1.23 0.13 0.76 0.04

Growth 1.49 3.65 0.69 5.80 0.98 7.13 0.62

High yield 1.11 8.05 –0.08 –1.92 0.19 4.10 0.15

Macro 0.61 1.09 0.30 1.84 0.05 0.28 0.05

Opportunistic 1.35 3.95 0.33 3.31 0.52 4.53 0.37

Other 1.41 5.58 0.23 3.05 0.69 8.19 0.57

RV 1.36 12.22 –0.04 –1.27 0.15 4.02 0.15

RV—convertible 1.25 8.44 –0.01 –0.31 0.18 3.55 0.14

RV—EQLS 0.87 5.64 0.09 2.04 0.14 2.65 0.17

RV—option arb 4.48 4.29 –0.78 –2.56 0.33 0.95 0.07

RV—other—stat arb 1.40 4.38 –0.02 –0.18 0.11 0.99 0.01

Short selling 0.04 0.07 –0.67 –3.94 –1.25 –6.41 0.51

Value 1.46 4.49 0.24 2.54 0.69 6.41 0.45

Note: Regression analysis of monthly hedge-fund index returns with positive and negative returns on
the S&P 500 used as separate regressors. ED = event driven; arb = arbitrage; EM = emerging market;
RV = relative value; EQLS = equity long/short; stat = statistical.

Source: AlphaSimplex Group.

α̂ t α̂( ) β̂+ t β̂+( ) β̂– t β̂–( )
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Liquidity and Credit
Although liquidity and credit are separate sources
of risk exposures for hedge funds and their
investors—one type of risk can exist without the
other—nevertheless, they have been inextricably
intertwined in the minds of most investors because
of the problems encountered by Long-Term Capital
Management and many other fixed-income relative-
value hedge funds in August and September of
1998. Because many hedge funds rely on leverage,
the magnitudes of the positions are often consider-
ably larger than the amount of collateral posted to
support them. Leverage has the effect of a magnify-
ing glass, expanding small profit opportunities into
larger ones but also expanding small losses into
larger losses. And when adverse changes in market
prices reduce the market value of collateral, credit is
withdrawn quickly and the subsequent forced liqui-
dation of large positions over short periods of time
can lead to widespread financial panic, as in the
aftermath of the default of Russian government debt
in August 1998.16 Along with the many benefits of
a truly global financial system is the cost that a
financial crisis in one country can have dramatic
repercussions in several others.

The basic mechanisms driving liquidity and
credit are familiar to most hedge-fund managers
and investors, and there has been much progress in
the recent literature in modeling both credit and
liquidity risk.17 However, the complex network of
creditor/obligor relationships, revolving credit
agreements, and other financial interconnections is
largely unmapped. Perhaps some of the newly
developed techniques in the mathematical theory of
networks will allow us to construct systemic mea-
sures for liquidity and credit exposures, and for the
robustness of the global financial system to idiosyn-
cratic shocks. The “small world” networks consid-
ered by Watts and Strogatz (1998) and Watts (1999)
seem to be particularly promising starting points.

A more immediate method for gauging the
liquidity-risk exposure of a given hedge fund is to
examine the autocorrelation coefficients, ρk, of the
fund’s monthly returns, where ρk ≡ Cov[Rt, Rt–k]/
Var[Rt] is the kth order autocorrelation of {Rt},18

which measures the degree of correlation between
the returns of months t and t – k. To see why auto-
correlations may be useful indicators of liquidity
exposure, recall that one of the earliest financial
asset pricing models is the martingale model, in
which asset returns are serially uncorrelated (ρk = 0
for all k ≠ 0). Indeed, the title of Samuelson’s (1965)
seminal paper—“Proof That Properly Anticipated
Prices Fluctuate Randomly”—provides a succinct
summary for the motivation of the martingale prop-

erty: In an informationally efficient market, price
changes must be unforecastable if they are properly
anticipated, i.e., if they fully incorporate the expec-
tations and information of all market participants. 

This concept of informational efficiency has a
wonderfully counterintuitive and seemingly con-
tradictory flavor to it—the more efficient the mar-
ket, the more random the sequence of price changes
generated by such a market must be, and the most
efficient market of all is one in which price changes
are completely random and unpredictable. This, of
course, is not an accident of nature but is the direct
outcome of many active participants attempting to
profit from their information. Legions of greedy
investors aggressively pounce on even the smallest
informational advantage at their disposal, and in
doing so, they incorporate their information into
market prices and quickly eliminate the profit
opportunities that gave rise to their actions. If this
occurs instantaneously, as it must in an idealized
world of “frictionless” markets and costless trading,
then prices must always fully reflect all available
information and no profits can be garnered from
information-based trading (because such profits
have already been captured).

This extreme version of market efficiency is
now recognized as an idealization that is unlikely to
hold in practice.19 In particular, market frictions—
e.g., transactions costs, borrowing constraints, costs
of gathering and processing information, and insti-
tutional restrictions on short sales and other trading
practices—do exist, and they all contribute to the
possibility of serial correlation in asset returns,
which cannot easily be “arbitraged” away precisely
because of these frictions. From this perspective, the
degree of serial correlation in an asset’s returns can
be viewed as a proxy for the magnitude of the
frictions, and illiquidity is one of the most common
forms of such frictions. 

For example, it is well known that the historical
returns to residential real-estate investments are
considerably more highly autocorrelated than, say,
the returns to the S&P 500 indexes during the same
sample period. Similarly, the returns of S&P 500
futures exhibit less serial correlation than those of
the index itself. In both examples, the more liquid
instrument exhibits less serial correlation. The eco-
nomic rationale is a modified version of Samuel-
son’s (1965) argument: Predictability in asset returns
will be exploited and eliminated only to the extent
allowed by market frictions. Despite the fact that the
returns to residential real estate are highly predict-
able, it is impossible to take full advantage of such
predictability because of the high transactions costs
associated with real-estate transactions, the inability
to short sell properties, and other frictions.20
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There is another, more mundane reason for
using autocorrelations to proxy for liquidity. For
portfolios of illiquid securities, i.e., securities that
are not frequently traded and for which there may
not be a well-established market price, a hedge-fund
manager has considerable discretion in marking the
portfolio’s value at the end of each month to arrive
at the fund’s net asset value (NAV). Given the
nature of hedge-fund compensation contracts and
performance statistics, managers have an incentive
to “smooth” their returns by marking their portfo-
lios to less than their actual value in months with
large positive returns so as to create a “cushion” for
those months with lower returns. Such return-
smoothing behavior yields a more consistent set of
returns over time with lower volatility and, there-
fore, a higher Sharpe ratio, but it also produces serial
correlation as a side effect. Of course, if the securities
in the manager’s portfolio are actively traded, the
manager has little discretion in marking the portfo-
lio; it is “marked to market.” The more illiquid the
portfolio, the more discretion the manager has in
marking its value and smoothing returns, creating
serial correlation in the process.21 

To obtain a summary measure of the overall
statistical significance of the autocorrelations, Ljung
and Box (1978) proposed the following statistic:

, (22)

which has an approximate chi-squared distribution
with p degrees of freedom in large samples and
under the null hypothesis of no autocorrelation.22

By forming the sum of squared autocorrelations, the
statistic Q reflects the absolute magnitudes of the

‘s irrespective of their signs; hence, funds with
large positive or negative autocorrelation coeffi-
cients will exhibit large Q-statistics.

To illustrate the potential value of autocorrela-
tions and the Q-statistic for measuring liquidity risk,
I estimated these statistics for a sample of 10 mutual
funds and 12 hedge funds using monthly historical
returns.23 Table 9 reports the means, standard devi-
ations, autocorrelations  to , and p-values of the
Q-statistic using the first six autocorrelations for the
sample of mutual and hedge funds. Panel A shows
that the 10 mutual funds have very little serial cor-
relation in returns, with first-order autocorrelations
ranging from –3.99 percent to 12.37 percent, and
with p-values of the corresponding Q-statistics
ranging from 10.95 percent to 80.96 percent, imply-
ing that none of the Q-statistics is significant at the
5 percent level.24 The lack of serial correlation in
these 10 mutual-fund returns is not surprising.
Because of their sheer size, these funds consist pri-
marily of highly liquid securities, and, as a result,

their managers have very little discretion in mark-
ing such portfolios. Moreover, many of the SEC
regulations that govern the mutual fund industry,
e.g., detailed prospectuses, daily NAV calculations,
and quarterly filings, were enacted specifically to
guard against arbitrary marking, price manipula-
tion, and other unsavory investment practices.

In sharp contrast to the mutual-fund sample,
the hedge-fund sample displays substantial serial
correlation, with first-order autocorrelation coeffi-
cients that range from –20.17 percent to 49.01 per-
cent, with 8 out of 12 funds that have Q-statistics
with p-values less than 5 percent, and with 10 out of
12 funds with p-values less than 10 percent. The only
two funds with p-values not significant at the 5
percent or 10 percent levels are the “Risk arbitrage
A” and “Risk arbitrage B” funds, which have
p-values of 74.10 percent and 93.42 percent, respec-
tively. This is consistent with the notion of serial
correlation as a proxy for liquidity risk because,
among the various types of funds in this sample, risk
arbitrage is likely to be one of the most liquid, since,
by definition, such funds invest in securities that are
exchange-traded and where trading volume is typ-
ically heavier than usual because of the impending
merger events on which risk arbitrage is based.

Of course, there are several other aspects of
liquidity that are not captured by serial correlation,
and certain types of trading strategies can generate
serial correlation even though they invest in highly
liquid instruments.25 In particular, conditioning
variables such as investment style, the types of secu-
rities traded, and other aspects of the market envi-
ronment should be taken into account, perhaps
through the kind of risk model proposed in the
previous section. However, as a first cut for measur-
ing and comparing the liquidity exposures of vari-
ous hedge-fund investments, autocorrelation
coefficients and Q-statistics provide a great deal of
insight and information in a convenient manner.

Other Considerations
There are at least two other aspects of risk manage-
ment for hedge funds that deserve further consid-
eration: risk preferences and operational risks.

Risk preferences play a major role in the risk
management of hedge funds from both the man-
ager’s and the investor’s perspectives. Hedge fund
managers are typically compensated with both
fixed and incentive fees, and this nonlinear payoff
scheme can induce excessive risk-taking behavior
if it is not properly managed. Imposing hurdle
rates, high-water marks, and other nonlinearities
on the manager’s compensation creates additional
complexities that may have a material impact on
the manager’s investment decisions, particularly in

Q
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extreme circumstances, such as after large losses.
Moreover, given the large swings that often char-
acterize hedge-fund performance, the financial and
psychological pressures faced by managers each
day are not trivial and do take their toll.

At the same time, the risk preferences of inves-
tors are equally relevant for risk management for
hedge funds since the behavior of investors greatly
influences the behavior of managers. If the stereo-
type that hedge-fund investors are “hot money” is
true, this will affect the types of risks that hedge-
fund managers can bear. Imposing “lock-up” peri-
ods and redemption fees are typical methods of
dealing with skittish investors, but these can some-
times exacerbate the all-too-human tendency to
panic in the face of crisis.

Any complete risk management protocol
must take into account the risk preferences of both
investors and managers in determining the appro-
priate risk exposures of a hedge fund. Given the
magnitudes and many variations of risk that affect
the typical hedge fund, it is even more important
to integrate the “Three P’s of Total Risk Manage-
ment”—prices, probabilities, and preferences—in
this context.26

The importance of risk preferences under-
scores the human element in hedge funds, which is
part of a broader set of issues often categorized as
“operational risks.” These include organizational
aspects such as the reliability of back-office opera-
tions, legal infrastructure, accounting and trade rec-
onciliation, personnel issues, and the day-to-day

Table 9. Autocorrelations of Mutual-Fund and Hedge-Fund Returns: Monthly Data, Various Sample 
Periods

Fund
Start 
Date T

p-Value 
of Q6

A. Mutual funds

Vanguard 500 Index  76.10  286  1.30%  4.27%  –3.99%  –6.60%  –4.94%  –6.38%  10.14%  –3.63%  31.85%

Fidelity Magellan  67.01  402 1.73 6.23  12.37  –2.31  –0.35  0.65 7.13  3.14 17.81

Investment Company
of America  63.01  450 1.17 4.01  1.84  –3.23  –4.48  –1.61 6.25  –5.60 55.88

Janus  70.03  364 1.52 4.75  10.49  –0.04  –3.74  –8.16 2.12  –0.60 30.32

Fidelity Contrafund  67.05  397 1.29 4.97  7.37  –2.46  –6.81  –3.88 2.73  –4.47 42.32

Washington Mutual 
Investors  63.01  450 1.13 4.09  –0.10  –7.22  –2.64  0.65 11.55  –2.61 16.73

Janus Worldwide  92.01  102 1.81 4.36  11.37  3.43  –3.82  –15.42  –21.36  –10.33 10.95

Fidelity Growth and 
Income  86.01  174 1.54 4.13  5.09  –1.60  –8.20  –15.58 2.10  –7.29 30.91

American Century 
Ultra  81.12  223 1.72 7.11  2.32  3.35  1.36  –3.65 –7.92  –5.98 80.96

Growth Fund of 
America  64.07  431 1.18 5.35  8.52  –2.65  –4.11  –3.17 3.43  0.34 52.45

B. Hedge funds

Convertible/option 
arbitrage  92.05  104 1.63 0.97  42.59  28.97  21.35  2.91 –5.89  –9.72 0.00

Relative value  92.12  97 0.66 0.21  25.90  19.23  –2.13  –16.39 –6.24  1.36 3.32

Mortgage-backed 
securities  93.01  96 1.33 0.79  42.04  22.11  16.73  22.58 6.58  –1.96 0.00

High-yield debt  94.06  79 1.30 0.87  33.73  21.84  13.13  –0.84 13.84  4.00 1.11

Risk arbitrage A  93.07  90 1.06 0.69  –4.85  –10.80  6.92  –8.52 9.92  3.06 74.10

Long/short equities  89.07  138 1.18 0.83  –20.17  24.62  8.74  11.23 13.53  16.94 0.05

Multistrategy A  95.01  72 1.08 0.75  48.88  23.38  3.35  0.79 –2.31  –12.82 0.06

Risk arbitrage B  94.11  74 0.90 0.77  –4.87  2.45  –8.29  –5.70 0.60  9.81 93.42

Convertible arbitrage A  92.09  100 1.38 1.60  33.75  30.76  7.88  –9.40 3.64  –4.36 0.06

Convertible arbitrage B  94.07  78 0.78 0.62  32.36  9.73  –4.46  6.50 –6.33  –10.55 8.56

Multistrategy B  89.06  139 1.34 1.63  49.01  24.60  10.60  8.85 7.81  7.45 0.00

Fund of funds  94.10  75 1.68 2.29  29.67  21.15  0.89  –0.90  –12.38  3.01 6.75

Note: The term  denotes kth autocorrelation coefficient; the column heading “p-Value of Q6” denotes the significance level of the
Ljung–Box (1978) Q-statistic.

Source: AlphaSimplex Group.
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management of the business. Many of these aspects
are not subject to quantitative analysis, but they are
bona fide risks that cannot be ignored and, in some
cases, can quickly overshadow market risks in
determining fund performance.

Conclusion
Despite the rapid growth in hedge-fund assets over
the past decade, the industry is poised for even more
growth as individual and institutional investors
become more attuned to its risks and rewards. How-
ever, an important catalyst in this next phase of
growth will be risk transparency and more sophis-
ticated risk management protocols for addressing
the issues raised in this article.

A better understanding of the risks that hedge-
fund investments pose for institutional investors is
not just an unavoidable aspect of fiduciary respon-
sibility, but also represents significant business
opportunities in this growing industry.27 For exam-
ple, by the very nature of their assets and liabilities,
pension funds may be in a natural position to pro-
vide the kind of liquidity that many hedge funds
seek. By doing so, they are able to garner more
attractive returns for their plan participants, using
hedge funds as the vehicle. However, hedge-fund
managers must develop a deeper appreciation for
the types of risks that are consistent with the invest-
ment mandates of institutional investors. Asset/
liability management for pension funds may be a
somewhat arcane discipline, but it involves issues
and insights that are remarkably similar to those of
a typical hedge fund. For example, a plan sponsor
must select and constantly manage the fund’s asset
mix to minimize the risk of defaulting on the plan’s
liabilities, but completely eliminating such risks is
typically too costly; i.e., the funding cost for a com-
pletely “immunized” portfolio of liabilities is too
high. By maintaining a certain “surplus” of assets
to liabilities, plan sponsors can control this risk. The
questions they face are how large the surplus
should be and what an acceptable level of default
risk is over horizons of 1 year, 5 years, and 20 years.

These considerations are intimately tied to the
dynamic risk exposures of the pension fund’s
investments, and at least in some cases, hedge funds
may provide the best fit for an institutional inves-
tor’s optimal risk profile.

For this reason, there is likely to be a double
coincidence of desires on the part of managers and
investors with respect to risk transparency. Manag-
ers are unwilling to provide position transparency,
and investors usually do not have the time or
resources to interpret positions (see, for example,
the strategy outlined in Table 6). Instead, both man-
agers and investors seek risk transparency, a hand-
ful of risk analytics that could provide investors
with a meaningful snapshot of a hedge fund’s risk
exposures without compromising the proprietary
information contained in the manager’s positions.
Developing such a set of risk analytics is the next
challenge in the evolution of the hedge-fund indus-
try. Although this will undoubtedly create more
complexities for investors and managers alike, this
is the price to be paid for access to a richer and
potentially more rewarding set of investment alter-
natives. In explaining his philosophy of scientific
inquiry, Albert Einstein once commented, “Every-
thing should be made as simple as possible, but not
simpler.” The same can be said for the risk manage-
ment of hedge funds.

Notes
1. In particular, CalPERS allocated up to $1.5 billion to alter-

native investments in 1999 according to Chernoff (2000).
2. Of course, many experts in intellectual property law would

certainly classify trading strategies, algorithms, and their
software manifestations as intellectual property that, in
some cases, is patentable. However, most hedge-fund man-
agers today (and, therefore, most investors) have elected
not to protect such intellectual property through patents.
They have chosen instead to keep them as “trade secrets,”

purposely limiting access to these ideas even within their
own organizations. As a result, the departure of key person-
nel from a hedge fund often causes the demise of the fund.

3. See, for example, Smithson, Smith, and Wilford (1995), Jorion
and Khoury (1996), Head and Horn (1997), Harrington and
Niehaus (1999), Saunders (1999), and Shimpi (1999).

4. This assumes a one-year term for the put, with a strike that
is 20 percent out of the money, an annual volatility of 75
percent, and a risk-free rate of 5 percent.

I thank Peter Chan and June Zhang for research assis-
tance and many stimulating discussions and Leo de
Bever, Arnout Eikeboom, Gifford Fong, Jacob Goldfield,
Stephanie Hogue, Tony Kao, Bob Merton, Dan O’Reilly,
and the conference participants at the 1999 IMN Hedge
Fund Investors Summit, the Deutsche Bank Securities
“Bridging the Gap” Conference, the Pricewaterhouse-
Coopers Risk Institute 2000 Conference, the Risk 2001
Europe Conference, and the Fall 2001 Q Group Confer-
ence for many helpful comments and suggestions.
Research support from AlphaSimplex Group is gratefully
acknowledged.
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5. A short squeeze occurs when a heavily shortsold security’s
price increases suddenly, creating large losses for shortsell-
ers and causing additional price increases as shortsellers
attempt to close out their short positions by buying the
security. 

6. Unlike publicly traded securities with exchange-deter-
mined prices that become part of the public record once
they are established and recorded, hedge funds are under
no obligation to allow their performance data to be included
in databases and have no incentives to do so once their
funds shut down.

7. See, for example, the TASS Management databases of hedge
funds and commodity trading advisors (CTAs) and the
studies by Ackermann, McEnally, and Ravenscraft (1999),
Brown, Goetzmann, and Ibbotson (1999), Brown, Goetz-
mann, and Park (2001), Elton, Gruber, and Blake (1996),
Fung and Hsieh (1997), and Schneeweis and Spurgin (1996).

8. These values can be readily computed from the cumulative
probability distribution of X∗, which is well known to be
Pr(X∗ < x) = Fn(x); hence, E[X∗] = ∫xdF (x), Var[X∗] =
∫x2dF(x) – E[X∗]2, and δ = Fn (Cδ) ⇒ Cδ = F–1 (δ1/n), where
δ = 0.025, 0.975.

9. See, for example, Brown, Goetzmann, Ibbotson, and Ross
(1992), Lo (1994), and Lo and MacKinlay (1990).

10. For this reason, hedge-fund track records are often summa-
rized by multiple statistics, e.g., Sharpe ratio, Sortino ratio,
maximum drawdown, worst month.

11. As a mental exercise to check your own risk preferences,
take a hard look at the monthly returns in Table 4 and ask
yourself whether you would invest in such a fund.

12. The margin required per contract is assumed to be 100 ×
{15 percent × (current level of the SPX) – (put premium) –
(amount out of the money)}, where the amount out of the
money is equal to the current level of the SPX minus the
strike price of the put.

13. This figure varies from broker to broker and is meant to be
a rather conservative estimate that might apply to a $10
million start-up hedge fund with no prior track record.

14. A portfolio of options is worth more than an option on the
portfolio; hence, shorting 500 puts on the individual stocks
that constitute the SPX will yield substantially higher pre-
miums than shorting puts on the index.

15. One of the most striking examples of phase-locking behav-
ior is the automatic synchronization of the flickering of
Southeast Asian fireflies. See Strogatz (1994) for a descrip-
tion of this remarkable phenomenon, as well as an excellent
review of phase-locking behavior in biological systems.

16. Note that in the case of CDP, the fund’s consecutive returns
of –18.3 percent and –16.2 percent in August and September
1998 would have made it virtually impossible for the fund
to continue without a massive injection of capital. In all
likelihood, it would have closed down, along with many
other hedge funds during those fateful months, never to
realize the extraordinary returns that it would have earned
had it been able to withstand the losses in August and
September (see Table 4).

17. See, for example, Bookstaber (1999, 2000), Kao (2000), and
their citations.

18. The kth order autocorrelation of a time series {Rt} is defined
as the correlation coefficient between Rt and Rt–k, which is
simply the covariance between Rt and Rt–k divided by the
square root of the product of the variances of Rt and Rt–k.
But since the variances of Rt and Rt–k are the same under
our assumption of stationarity, the denominator of the
autocorrelation is simply the variance of Rt.

19. See, for example, Farmer and Lo (1999).
20. These frictions have led to the creation of real-estate invest-

ment trusts (REITs), and the returns to these securities—
which are considerably more liquid than the underlying
assets on which they are based—exhibit much less serial
correlation.

21. There are, of course, other considerations in interpreting the
serial correlation of any portfolio’s returns, of which return
smoothing is only one. Others include nonsynchronous
trading, time-varying expected returns, and market ineffi-
ciencies. See Getmansky, Lo, and Makarov (2001) for a more
detailed analysis of serial correlation in hedge-fund returns
and Lo (forthcoming 2002) for adjustments to the Sharpe
ratio to correct for serial correlation.

22. See Kendall, Stuart, and Ord (1983, Chapter 50.13) for details.
23. The 10 mutual funds selected were the 10 largest U.S.

mutual funds as of February 11, 2001, and monthly total
returns from various start dates through June 2000 were
obtained from the University of Chicago’s Center for
Research in Security Prices. Monthly returns for the 12
hedge funds from various start dates to January 2001 were
obtained from the Altvest database. The 12 funds were
chosen to yield a diverse range of annual Sharpe ratios
(from 1 to 5) computed in the standard way ( , where
SR is the Sharpe ratio of monthly returns), with the addi-
tional requirement that the funds have a minimum five-
year history of returns. The names of the hedge funds have
been omitted to maintain their privacy, and they are refer-
enced only by their stated investment styles, e.g., relative
value fund, risk arbitrage fund, etc.

24. The p-value of a statistic is defined as the smallest level of
significance for which the null hypothesis can be rejected
based on the statistic’s value. For example, a p-value of
16.73 percent for the Q-statistic of Washington Mutual
Investors implies that the null hypothesis of no serial
correlation can only be rejected at the 16.73 percent signif-
icance level—at any smaller level of significance, say 5
percent, the null hypothesis cannot be rejected. Therefore,
smaller p-values indicate stronger evidence against the
null hypothesis, and larger p-values indicate stronger evi-
dence in favor of the null. p-values are often reported
instead of test statistics because they are easier to interpret
(to interpret a test statistic, one must compare it to the
critical values of the appropriate distribution; this compar-
ison is performed in computing the p-value). See, for exam-
ple, Bickel and Doksum (1977, Chapter 5.2.B) for further
discussion of p-values and their interpretation.

25. These subtleties are considered in more detail in Getman-
sky, Lo, and Makarov (2001).

26. See Lo (1999) for further details.
27. I am especially indebted to Leo de Bever for pointing out

many of the issues raised in this paragraph.
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